Quantum Double models
A spin-like Hilbert space ν is defined at each lattice link: $\{|g\rangle: g \in G\}$

$$
\operatorname{dim}(\nu)=|G|
$$

Define linear operators $L_{ \pm}^{g}, g \in G$ associated with vertices, and $T_{ \pm}^{4}, n \in G$, associated with plaquettes:

$$
\begin{aligned}
& L_{+}^{g}|z\rangle=|g z\rangle, \quad L_{-}^{g}|z\rangle=\left|z g^{-1}\right\rangle, \\
& T_{+}^{h}|z\rangle=\delta_{h, z}|z\rangle, \quad T_{-}^{h}|z\rangle=\delta_{h}^{-1}, z|z\rangle
\end{aligned}
$$

In the case of Toxic code model:

$$
L_{ \pm}^{g} \longleftrightarrow \sigma^{x}, T_{ \pm}^{4} \longleftrightarrow\left(\mathbb{1} \pm \sigma^{z}\right) / 2
$$

We have commutation relations:

$$
\begin{aligned}
& L_{+}^{g} T_{+}^{h}=T_{+}^{g h} L_{+}^{g}, L_{-}^{g} T_{+}^{h}=T_{+}^{h g^{-1}} L_{-}^{g}, \\
& L_{+}^{g} T^{h}=T_{-}^{h g^{-1}} L_{+}^{g}, \quad L_{-}^{g} T_{-}^{h}=T_{-}^{g h} L_{-}^{g}
\end{aligned}
$$

\rightarrow introduce orientation on edges

To each vertex v of the lattice we assign vertex operator defined by

$$
A(\nu)=\frac{1}{|G|} \sum_{g \in G} L_{+, 1}^{g} L_{+, 2}^{g} L_{-, 3}^{g} L_{-, 4}^{g}
$$

Similarly, define plaquette op.

$$
B(p)=\sum_{h_{1} \cdots h_{4}=1} T_{-, 1}^{h_{1}} T_{-, 2}^{h_{2}} T_{+, 3}^{h_{3}} T_{+, 4}^{h_{4}}
$$

All operators $A(\nu)$ and $D(p)$ commute with each other
\rightarrow define Hamiltonian:

$$
H=-\sum_{2} A(2)-\sum_{p} B(p)
$$

Ground state is a stabilizer state satisfying
(*) $A(2)|\xi\rangle=|\xi\rangle, B(p)|\psi\rangle=|\xi\rangle \quad \forall \nu, p$
\rightarrow excitations are identified by the violation of conditions (*)
The Hamiltonian is naturally gapped as $A(\nu)$ and $B(p)$ have discrete spectra
\rightarrow quantum inf. is energetically protected

Example I: Abelian quantum double models
Let $G=\mathbb{Z}_{d}=\{0,1, \ldots, d-1\}$
\rightarrow we have: g. $h=g+h(\bmod d)$
Next, consider lattice with square geometry and assign d-level spins on every edge
\rightarrow generalized Pauli operators

$$
\begin{aligned}
& X=\sum_{h \in \mathbb{Z} d}|h+1(\bmod d)\rangle\langle h|, \\
& Z=\sum_{h \in \mathbb{Z}_{d}} w^{h}|h\rangle\langle h|, \quad \omega=e^{2 \pi i / d}
\end{aligned}
$$

For $d=2$, we recover usual Pauli σ^{x} and σ^{z} \rightarrow general (arbitrary d) commutation rel:

$$
Z X=\omega X Z
$$

\rightarrow eigenstates of X-operator are:

$$
|\tilde{g}\rangle=\frac{1}{\sqrt{d}} \sum_{h \in \mathbb{Z} d} \omega^{g h}|h\rangle, g=0, \ldots, d-1
$$

with eigenvalues $\omega^{-g}=e^{-2 \pi i g / d}, g \in \mathbb{Z}_{d}$
\rightarrow vertex and plaquette operators:

$$
A(2)=X_{1}^{+} x_{2}^{+} X_{3} X_{4}, \quad B(p)=z_{1}^{+} z_{2} Z_{3} Z_{4}^{+}
$$

both have eigenvalues $\omega^{g}, g=0, \ldots, d-1$

Consider a general eigenstate 14) of all vertex and plaquette operators
\rightarrow vertex v_{1} or plaquette p, is "unoccupied" if

$$
A(v)|\psi\rangle=|\psi\rangle \quad \text { or } B(p)|\psi\rangle=|\psi\rangle
$$

\rightarrow anjou e^{g} is associated with vertex v, if

$$
A(\nu)|\psi\rangle=\omega^{g}|\psi\rangle,
$$

- anyon m^{h} is associated with plaquette p, if

$$
B(p)|\varphi\rangle=\omega^{4}|\psi\rangle
$$

- presence of both anyous is associated with composite particle $\Sigma^{g, h}$
Specify Hamiltonian to be

$$
H=-\left[\sum_{v} \sum_{h \in Z d}(A(\nu))^{h}+\sum_{p} \sum_{h \in Z_{d}}(B(p))^{h}\right]
$$

\rightarrow has anyonic vacuum $\mid\}\rangle$ as ground state
\rightarrow assigns equal energy to all e^{g} quasiparticle excitations as $\sum_{n \in Z_{d}}(A(v))^{h}$ act identically on each anyon ${ }^{h \in Z_{d}} e^{g}, g \in \mathbb{Z}_{d}$. analogously for excitations m^{g}
$\rightarrow d^{2}$ different particle species:

$$
1, e^{g}, m^{g}, \quad \varepsilon^{g, h} \forall g, h \in Z_{d}
$$

Fusion rules:

$$
\begin{gathered}
e^{g} \times e^{h}=e^{g+h(\bmod d)}, m^{g} \times m^{h}=\operatorname{mg}^{g+h}(\bmod d) \\
e^{g} \times m^{h}=e^{g, h}
\end{gathered}
$$

Braiding: From the commutation relation ($x \times x$) we deduce the R-matrix

$$
\left(R_{e}^{i_{m} g_{m} h}\right)^{2}=\omega^{g h}, \quad \omega=e^{2 \pi i / d}
$$

Generation of anyous is achieved by applying Z or X spin rotations to ground state $|\xi\rangle$:

\longrightarrow single spin rotations create particle-antip. pairs with positions determined by orientations of corresponding link

Example II: The non-Abelian $D\left(s_{3}\right)$ model
We take G to be simplest non-Abelian finite group: $G=S_{3}$

$$
S_{3}=\left\{e, c, c^{2}, t, t c, t c^{2}\right\}
$$

identity cyclic perm.
we have: $t^{2}=c^{3}=e, \quad t c=c^{2} t$

$$
\rightarrow\left|S_{3}\right|=6
$$

Pick oriented two-dimensional square lattice \longrightarrow assign 6-level spin spanned by states $|g\rangle$ to each edge
Define operators acting on vertex 2 by:

$$
\begin{aligned}
& A_{g}(2)=L_{+, 1}^{g} L_{+, 2}^{g} L_{-, 3}^{g} L_{-, 41}^{g} \quad \text { for } g \in S_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \text { satisfy }\left[A_{g}(\nu), A_{g^{\prime}}\left(\nu^{\prime}\right)\right]=0 \forall \quad, \nu^{\prime}, g_{1} g^{\prime}
\end{aligned}
$$

\rightarrow build vertex operator $A(2)$ as

$$
A(\nu)=\frac{1}{6}\left[A_{e}(\nu)+A_{c}(\nu)+A_{c^{2}}\left(\nu^{2}\right)+A_{t}(\nu)+A_{+c}(\nu)+A_{c}(\nu)\right]
$$

Similarly, define $B(p)$
\rightarrow stabilizer space consists of states with no quasi-particles:

$$
A(v)|\xi\rangle=|\xi\rangle, \quad B(p)|\xi\rangle=|\xi\rangle
$$

Hamiltonian is given by

$$
H=-\sum_{v} A(v)-\sum_{p} B(p)
$$

Define projectors onto quasiparticle occupations of vertices:

$$
\begin{aligned}
& P_{\Lambda}(\nu)=\frac{1}{6}\left[A_{e}(\nu)+A_{c}(\nu)+A_{c^{2}}(\nu)-A_{t}(\nu)-A_{t c}(\nu)-A_{t_{c}}(\nu)\right] \\
& P_{\phi}(\nu)=\frac{1}{3}\left[2 A_{e}(\nu)-A_{c}(\nu)-A_{c^{2}}(\nu)\right]
\end{aligned}
$$

\rightarrow have $P_{x}(2) P_{x^{\prime}}(2)=0$ for $X \neq X^{\prime}$

$$
P_{\Lambda}(\nu)|\psi\rangle=|\psi\rangle \rightarrow \text { quasiparticle } \Lambda \text { at } v
$$ $P_{d}(\nu)|\psi\rangle=|\psi\rangle \rightarrow$ quasiparticle ϕ at ν

Creation operators:

$$
\begin{aligned}
W_{\Lambda}(s)= & |e\rangle\langle e|+|c\rangle\langle c|+\left|c^{2}\right\rangle\left\langle c^{2}\right|-|t\rangle\langle t| \\
& -|t c\rangle\langle t c|-\left|t c^{2}\right\rangle\left\langle t c^{2}\right| \\
W_{\phi}(s) & =2|e\rangle\langle e|-|c\rangle\langle c|-\left|c^{2}\right\rangle\left\langle c^{2}\right|
\end{aligned}
$$

\rightarrow can be checked by applying P_{Λ} and P_{ϕ}
Fusion rules:

$$
\Lambda \times \Lambda=1, \quad \Lambda \times \Phi=\Phi, \quad \Phi \times \Phi=1+\lambda+\Phi
$$

$\longrightarrow \Phi$ is non-Abelian an you!
(there are more anyous in $D\left(s_{3}\right)$, but we focus here on closed sub-algebra $1, \wedge, \Phi)$
Verification:

$$
\begin{aligned}
-W_{\Lambda}(s) W_{\phi}(s) & =W_{\phi}(s) \\
-W_{\phi}(s) W_{\phi}(s) & =4|e\rangle\langle e|+|c\rangle\langle c|+\left|c^{2}\right\rangle\left\langle c^{2}\right| \\
& =W_{1}(s)+W_{\Lambda}(s)+W_{\phi}(s)
\end{aligned}
$$

