Quantum Double models A spin-like Hilbert space 2 is defined at each lattice link: {1g>:geG? $dim(\nu) = |G|$ Define linear operators LI, ge Gassociated with vertices, and T+, he G, associated with plaquettes : $L_{+}^{g}|z\rangle = |gz\rangle , L_{-}^{g}|z\rangle = |zg^{-1}\rangle ,$ T+ 12>= Shiz 2>, T- 4 2>= Shiz 2> In the case of Toric code model: $\downarrow^{j}_{+} \hookrightarrow \sigma^{\times}, \quad \uparrow^{h}_{+} \hookrightarrow (1^{\pm \sigma^{2}})_{2}$ We have commutation relations. L⁹ Th Thg'L⁹ L⁹ Th = TghL⁹ -> introduce orientation on edges

To each vertex
$$\nu$$
 of the lattice we
assign vertex operator defined by
 $A(\nu) = \frac{1}{|G|} \sum_{g \in G} L_{+1}^{2} L_{+12}^{2} L_{-13}^{2} L_{-14}^{2}$
Similarly, define plaquette $q_{P.:}$
 $B(p) = \sum_{h_{1}\cdots h_{q}=1} T_{-11}^{h_{1}} T_{-12}^{h_{2}} T_{+13}^{h_{3}} T_{+14}^{h_{3}}$
All operators $A(\nu)$ and $B(p)$ commute
with each other
 \neg define Hamiltonian:
 $H = -\sum_{\nu} A(\nu) - \sum_{p} B(p)$
Ground state is a stabilizer state
satisfying
 $(*) \quad A(\nu)|_{3} > = 1_{3}^{3}, B(p)|_{4} > = 1_{3}^{3} \forall \nu, p$
 \longrightarrow excitations are identified by the
violation of conditions (*)
The Hamiltonian is naturally gapped
as $A(\nu)$ and $B(p)$ have discrete spectra
 \rightarrow quantum inf. is energetically protected

Example I: Abelian quantum double models
Yet G = Zd = {0,1,..., d-1}
-> we have: g.h = g+h (mod d)
Next, consider lattice with square geometry
and assign d-level spins on every edge
-> generalized Pauli operators

$$X = \sum_{h \in Zd} |h+1 \pmod{d}\rangle \langle h|$$
, $w = e^{2\pi i/d}$
For d = 2, we recover usual Pauli σ^{r} and σ^{r}
-> general (arbitrary d) commutation rels:
 $ZX = WXZ$ (**)
-> eigenstates of X-operator are:
 $Iq > = \frac{1}{1d} \sum_{h \in Zd} w^{2h} |h\rangle$, $g = 0,..., d-1$
with eigenvalues $w^{-2} = e^{-2\pi i g/d}$, $g \in Zd$
-> wertex and plaquette operators:
 $A(v) = X_{i}^{+}X_{i}^{+}X_{3}X_{4}$, $B(p) = 2_{i}^{+}Z_{i}Z_{3}Z_{i}^{+}$
both have eigenvalues $w^{2}, g = 0,..., d-1$

Fusion rules:

$$e^{q} \times e^{h} = e^{q+h} (mod d), m^{q} \times m^{h} = m^{q+h} (mod d),$$

 $e^{q} \times m^{h} = e^{q+h}$
Braiding: From the commutation relation (**)
we deduce the R-matrix
 $\left(R_{e^{q}m^{h}}\right)^{2} = \omega^{qh}, \quad \omega = e^{2\pi i/d}$
Generation of anyons is achieved by
applying Z or X spin rotations to ground
state [3]:

Example I: The non-Abelian
$$D(S_3)$$
 model
We take G to be simplest non-Abelian
finite group: G = S₃
 $S_3 = \{e, c, c^2, t, tc, tc^3\}$
identity cyclic perm. exchange of (1,2)
we have: $t^2 = c^3 = e$, $tc = c^2t$
 $\rightarrow |S_3| = 6$
Pick oriented two-dimensional
square lattice \rightarrow assign 6-level spin
spanned by states (3)
to each edge
Define operators acting on vertex ν by:
 $A_q(\nu) = \frac{1}{2t_1}, \frac{1}{2t_2}, \frac{1}{2}, \frac{9}{2t_1}, \frac{1}{2t_2}, \frac{1}{2t_3}, \frac{1}{2t_3$

→ build vertex operator
$$A(v) \Rightarrow$$

 $A(v) = \frac{1}{6} \left[A_e(v) + A_c(v) + A_{c^2}(v^2) + A_t(v) + A_{tc}(v) + A_{tc$

Creation operators:

$$W_{\Lambda}(s) = |e\rangle \langle e| + |c\rangle \langle c| + |c^{2}\rangle \langle c^{2}| - |t\rangle \langle t|$$

$$-|tc\rangle \langle tc| - |tc^{2}\rangle \langle tc^{2}|$$

$$W_{\Phi}(s) = 2|e\rangle \langle e| - |c\rangle \langle c| - |c^{2}\rangle \langle c^{2}|$$

$$\Rightarrow can be checked by applying$$

$$P_{\Lambda} and P_{\Phi}$$

$$Fusion rules:$$

$$\Lambda \times \Lambda = 1, \quad \Lambda \times \Phi = \Phi, \quad \Phi \times \Phi = 1 + \Lambda + \Phi$$

$$\Rightarrow \Phi \text{ is non-Abelian anyon!}$$

(there are more anyons in
$$\mathcal{D}(s_3)$$
,
but we focus here on closed
sub-algebra $1, \Lambda, \Phi$)
Verification:
 $W_{\Lambda}(s) W_{\Phi}(s) = W_{\Phi}(s)$
 $W_{\Phi}(s) W_{\Phi}(s) = 4 |e\rangle \langle e| + |c\rangle \langle c| + |c^2\rangle \langle c^2|$
 $= W_{1}(s) + W_{\Lambda}(s) + W_{\Phi}(s)$